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Abstract 

This paper investigates the research question if senders of large amounts of irrelevant or 

unsolicited information – commonly called “spammers” - distort the network structure of social 

networks. Two large social networks are analyzed, the first extracted from the Twitter discourse 

about a big telecommunication company in Italy, and the second obtained from three years of 

email communication of 200 managers working for a large multinational company. This work 

compares network robustness and the stability of centrality and interaction metrics, as well as the 

use of language, after removing spammers and the most and least connected nodes. The results 

show that spammers do not significantly alter the structure of the information-carrying network, 

for most of the social indicators. The authors additionally investigate the correlation between e-

mail subject line and content by tracking language sentiment, emotionality, and complexity, 

addressing the cases where collecting email bodies is not permitted for privacy reasons. The 

findings extend the research about robustness and stability of social networks metrics, after the 

application of graph simplification strategies. The results have practical implication for network 

analysts and for those company managers who rely on network analytics (applied to company 

emails and social media data) to support their decision-making processes. 
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1. Introduction 

In today’s era of constant availability of all types of online social media, it has become too easy 

to pull the trigger on social media. Rapidly growing social platforms, such as Facebook and 

Twitter, have been widely infiltrated by spam messages (Wang, 2010), with associated cleanup-

and filtering costs arising, for example, from the proliferation of fake news (Marchi, 2012). 

Inside the company, emails are still a major communication channel, as they provide a fast, user 

friendly and cost-effective communication. The management of emails, and the problem of email 

overload, remain a major challenge for organizations (Sumecki, Chipulu, & Ojiako, 2011). 

Today’s companies well understand that interrupting employees through too many emails has a 

cost: it can lead to stress and frustration (Mark, Gudith, & Klocke, 2008), as well as to 

decreasing work efficiency (Jackson, Dawson, & Wilson, 2001). Indeed, a large amount of the 

emails generated within organizations is not business critical (Sumecki et al., 2011). Employees 

are often subjected to a constant firestorm of e-mails from the CEO and senior management, 

asking for their commitment to the companies’ objectives, or sharing recent achievements and 

future goals. Human resources managers send messages about changing rules and regulations, 

and well-meaning volunteers solicit donations for United Way and other charities. In this paper, 

the authors investigate different methods to reduce this cacophony of online chatter to be able to 

better analyze the underlying social network structure, dynamics, and content. Reducing the 

disturbance in email communication can help social network analysts, and support better 

interactions among employees, or between a company and its clients. 

E-mail and online social networks provide an unprecedented view into the inner workings of 

organizations by providing access to their internal and external communication behavior (Gloor, 
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2005, 2017). Using dynamic social network analysis, researchers can gain deep insights into the 

functioning of these networks. Analyzing the email communication patterns within large 

multinational companies, for example, proved its value in predicting managerial turnover (Gloor, 

Fronzetti Colladon, Grippa, & Giacomelli, 2017) or behaviors that can improve customer 

satisfaction (Gloor, Fronzetti Colladon, Giacomelli, Saran, & Grippa, 2017). However, 

depending on the algorithms used, analyzing large datasets can be very time consuming or 

require costly hardware solutions (Gandomi & Haider, 2015; Kaisler, Armour, Espinosa, & 

Money, 2013; Yaqoob et al., 2016). In order to reduce these problems, data cleaning and 

simplification techniques can be implemented, to reduce the sample size and consequently the 

algorithmic computation times, and to study a “cleaner” signal (Rahm & Do, 2000; Stringhini, 

Kruegel, & Vigna, 2010). In the process of data cleaning, the analyst has the duty to correct or 

eliminate inaccurate or incomplete records, as well as irrelevant observations, which might 

represent a disturbance of the general insights coming from the analysis. “Spammers” inside and 

outside of the organization potentially influence the social network structure, and thus degrade 

the value of predictive analytics (Bonchi, Castillo, Gionis, & Jaimes, 2011). Therefore, they 

represent a cluster of social actors which the analyst might want to remove before carrying out a 

network analysis – with the double advantage of ‘cleaning’ the insights provided by social 

interaction metrics and reducing the computational complexity of the analysis. This intent is 

supported by a large body of literature which already proposed methods and tools to effectively 

recognize spammers (Zheng, Zeng, Chen, Yu, & Rong, 2015) and filter spam messages, both in 

email (Bhowmick & Hazarika, 2018) and in social media communication (Xu, Sun, & Javaid, 

2016). Nonetheless, few studies analyzed the impact of node and link removal strategies on the 

structure of the communication network (e.g., Costenbader & Valente, 2003; Fronzetti Colladon 



4 
 

& Vagaggini, 2017). In contexts where spam detection is more difficult, or too time consuming, 

researchers might ask themselves if leaving spammers in the network will significantly affect the 

results of their investigation. Alternatively, when spammers can be correctly identified, 

researchers might wonder if removing them could significantly alter the social network structure 

and consequently the results of the analysis. Therefore, this work focuses on the research 

question: “do spammers influence the social network structure?”. 

Removing spammers can be considered a graph simplification strategy; however, spam 

identification is not always easy, especially in contexts where message content is not available to 

the analyst, for example for privacy reasons (e.g., Gloor, Fronzetti Colladon, Giacomelli, et al., 

2017). Indeed, many filtering algorithms are based on content analysis (Bhowmick & Hazarika, 

2018); when this is not possible, other network-based strategies have to be employed (Zheng et 

al., 2015), such as the identification of overly connected or very peripheral nodes. Even if these 

strategies are less effective, they are sometimes considered as a viable alternative (Fronzetti 

Colladon & Vagaggini, 2017). Accordingly, this work explores the impact of other graph 

simplification techniques and compares them with the direct removal of spammers.  

The authors conducted their experiments considering two real world networks: the first extracted 

from Twitter and the second obtained fetching three years of email communication within a large 

company operating in the utilities sector. The authors refer to metrics and methods from the field 

of Social Network Analysis (Borgatti, Everett, & Johnson, 2013), combining them with an 

investigation of the network dynamics (such as the response times) and with variables related to 

the use of language (sentiment, emotionality and complexity). Combining these three level of 

analysis offers deeper insights than just focusing on a single dimension of the communication 

process (Gloor, Fronzetti Colladon, Giacomelli, et al., 2017). More specifically, the authors start 
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with the identification of the “spammers” in their case study networks: those social actors who 

send mostly undesired and irrelevant messages (see the identification details in Section 3). 

Subsequently, they test the stability of different network metrics while removing the spammers 

and the least connected nodes, which are located at the network periphery. The authors also 

investigate the difference of the impacts produced by the removal of actors suspected to be 

spammers just because they are overly connected in the graph. The aim is to empirically explore 

the effects produced by various data cleaning strategies applied to real communication networks 

and to provide suggestions to the data scientists on tests to carry out before choosing the most 

appropriate strategy. From the hundreds of available network metrics and data cleaning 

strategies, the authors made a selection of some which are well-known and had been identified to 

be particularly useful in previous studies (Fronzetti Colladon & Vagaggini, 2017; Wasserman & 

Faust, 1994).  

This work extends the research about social network and text mining metrics, proposing a 

methodology to assess their robustness and stability in the presence of spammers. These metrics 

often represent ‘honest signals’ of collaboration (Pentland, 2008), whose stability has not yet 

been extensively tested when applying graph simplification techniques. The authors’ findings are 

similarly useful for researchers and business analysts involved in the study of online interaction 

and digital communication. Using the approach presented in this paper, analysts can include 

potential effects produced by node removal into their analysis. ‘Simplifying the network graph, 

before carrying a social network analysis, is often useful to reduce the computational complexity 

of algorithms and to clean the signal from possible disturbances’ (Fronzetti Colladon & 

Vagaggini, 2017, p. 1288). In addition, understanding the impact of spammers can support 
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managers who want to improve communication dynamics within their companies, or who are 

concerned about problems of communication overload. 

2. Network Robustness and Stability 

Network resilience can be considered as the ability of a system to return to its normal state after 

disturbance, based on early detection and fast recovery, while network robustness is the ability of 

a network to retain its system structure even when exposed to perturbations, i.e. while removing 

a subset of nodes and links (Holmgren, 2007). This paper is focused on the concept of network 

robustness and tests the effects of node deletion for data cleaning purposes. More specifically, 

the authors consider static changes in network structure, as well as the stability of a set of 

important node-level metrics.  

(Newman, 2010) presented different criteria for how to select ties and actors to remove from a 

social network, for instance  degree and betweenness centrality, with the aim of testing system 

robustness. In general, it is possible to distinguish between random failures, which can affect any 

node, and targeted strategies, where nodes to remove are chosen according to their importance in 

the network, usually with the purpose of reducing network connectivity. Targeted attacks require 

at least some prior knowledge of the network structure. In addition, interventions can be 

simultaneous or sequential, taking into account the system’s reaction before deciding on the next 

node to target (Holme, Kim, Yoon, & Han, 2002). The authors’ experiment is focused on 

simultaneous selections, as the graph simplification that the analyst carries out will happen all at 

once. 

Past research has investigated the properties of robustness and resilience of complex networks 

often in relation to events that could harm the network connectivity, classified as random failures 
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or targeted attacks on specific nodes and ties. While the research question of investigating 

changes in structural network properties through removal of spammers is somewhat different 

from the discussion on network resilience under malicious attack, it nevertheless informs our 

research. The understanding of vulnerabilities and of network stability can be extremely useful 

both for the design of robust systems (Estrada, 2006; Sohal, Sandhu, Sood, & Chang, 2018) and 

to gain insights which can help anticipate the effects of graph simplification choices (even if 

such choices are not directly classifiable as network attacks). Albert and colleagues (2000) 

studied the effects of node deletion on a sample made of webpages with cross links, finding that 

random failures have a small impact on increasing the average distance between nodes, whereas 

attacks directed to hubs can have a disruptive effect. This result also depends on the network 

structure of the World Wide Web, which has a degree distribution that can be approximated with 

a power-law (Broder et al., 2000). In the same work, authors proved that the effects of both 

attack strategies are small if the networks are not scale-free, but more homogeneously wired 

(Albert et al., 2000). Similar conclusions are drawn by Callaway et al. (2000) who tested 

network stability by means of  percolation models and by Xiao et al. (2008) who showed that 

attacks in communication networks are more dangerous when the attacker has prior knowledge 

of the network structure. Many real world communication networks are indeed scale-free, with a 

small number of highly connected nodes and a large number of nodes with a much lower degree 

(Barabasi, 2002). Comparable results were also found by Broder et al. (2000) who proved that 

the World Wide Web is more robust than expected because to destroy its connectivity an attacker 

would have to remove all the vertices with a degree greater than five. Another important element 

of the network topology, which is linked to its robustness and to the possible diffusion dynamics, 

is the presence of a giant component, a larger connected subgraph that contains a significant 
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fraction of nodes. The reduction in size of the giant component is a good proxy of the damage 

produced after an attack: if the giant component still exists, with a relatively small reduction in 

size, then the attack can be considered less harmful (Chen & Cheng, 2015; Holme et al., 2002; 

Iyer, Killingback, Sundaram, & Wang, 2013). Besides looking at the giant component and the 

average distance between nodes, other measures can be used to test the robustness at the network 

level, such as centrality measures or clustering coefficients (Cohen & Havlin, 2010). Shargel, 

Sayama, Epstein and Bar-Yam (2003) studied the variation of the network diameter (the 

maximum length of the shortest paths connecting reachable pairs) after attacks on scale-free and 

exponential random graphs (Lusher, Koskinen, & Robins, 2013). Assortativity (degree-degree 

correlation of adjacent nodes) is related to the concept of robustness, maintaining that a network 

core can better resist attacks when the assortative coefficient is higher (Rubinov & Sporns, 

2010). Iyer et al. (2013) proved that network robustness is both dependent on the clustering 

coefficient and the level of assortativity. Similarly, Trajanovski et al. (2013) showed that 

increasing assortativity is useful against targeted attacks, but less relevant when facing random 

failures. Other scholars addressed the problem of finding reasonable defense strategies against 

targeted attacks, based, for instance, on the addition of links to average degree nodes (Yehezkel 

& Cohen, 2012) or on sequential defensive interventions (Chen & Cheng, 2015). 

At the node level, Fronzetti Colladon and Vagaggini (2017) presented research which tests the 

effects of removing moderators from intranet online forums. Costenbader and Valente (2003) 

examined the stability of common centrality measures, calculated for each node of the original 

network as well as for random samples extracted from the same network. This paper presents a 

similar experiment, except that node selection is not random – resembling graph simplification 
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strategies, based on the removal of spammers – and that two additional dimensions of the 

communication process are considered, namely the use of language and interaction dynamics. 

To the extent of the authors’ knowledge, few extant studies address issues related to graph 

simplification for large social networks with the purpose of removing unwanted actors, such as 

spammers or email accounts of mailing lists (e.g., Zilli, Grippa, Gloor, & Laubacher, 2006). 

Therefore, this study is meant to offer a contribution to this field. 

 

3. Data Collection and Analysis 

The case study started with the collection of data from two real world networks involving two 

large multinational companies. Firstly, the authors considered an email network representative of 

the communication patterns of about 200 managers working for a large company operating 

mostly in the US. More than 260,000 email messages were collected over a period of three years, 

enabling the authors to generate a directed graph with more than 27,000 nodes (email accounts). 

In this network, there is a link between two email accounts if they exchanged at least one email 

message during the study period. Secondly, the authors extracted a Twitter network made of 

about 17,000 nodes (Twitter accounts) and more than 80,000 links. This network was collected 

fetching tweets with content relevant to a large multinational company operating in the 

telecommunication industry, over a period of two months. Two Twitter accounts were connected 

by a link if they were retweeting or mentioning each other, or if they were answering to each 

other’s tweets (see also Figure 1).  
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Twitter is a microblogging platform with more than 330 million active users1, which has been 

included in this study for two main reasons: its API system, which provides free access to 

researchers, and the huge attention it receives from scholars and practitioners. Google Scholar 

lists in its index more than 1,990,000 studies that mentioned the word ‘Twitter’ in the last ten 

years. 

Both networks present a degree distribution which is approximately scale-free (Barabasi, 2002), 

i.e. they are made of many nodes with few connections and a few hubs with a much larger 

number of links, exchanging emails or tweets with a large number of peers.  

Some previous studies addressed the problem of network robustness adopting a simulative 

approach (e.g., Booker, 2012), i.e. testing the effect of nodes or tie removal on simulated random 

graphs (with varying degree distributions and structural properties). Simulations are useful as 

they allow users to test different effects of removal strategies on different graph structures. 

However, when performing targeted selections on simulated graphs, nodes to remove are usually 

selected for their higher centrality. The authors’ choice was to analyze fewer real world 

networks, as one of the objectives of this paper is to specifically test the effect of the removal of 

spammers – whose selection can be very accurate when analyzing real email or Twitter accounts. 

In this work, “spammer” nodes are those social actors who are typically spamming the network 

with undesired and mostly unread messages, which might be advertising messages, real spam or 

phishing attempts, bots on Twitter, or just mailing lists internal to a business context. Consistent 

with previous studies (Stringhini et al., 2010), the authors identified spammers as the nodes 

which met the minimum number of conditions reported in Table 1. 

                                                             
1 https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/, accessed 
July 2, 2018. 
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Email Network 

(meets at least two conditions) 

Twitter Network 

(meets at least three conditions) 

A) Sends a large number of messages to 

other email accounts (high volume). 

A) Send a very high number of tweets, 

sometimes all through the 24 hours. 

B) Receives zero or very few messages 

by other email accounts (not identified 

as spammers). 

B) Is never, or very rarely, mentioned in 

the tweets of other accounts (not 

identified as spammers). 

C) Messages content is manually 

classified as spam based on its content 

(e.g., advertising messages, phishing 

attempts). 

C) Message content is manually 

classified as spam since clearly an 

advertising or phishing attempt, or 

because messages always contain a 

high number of links to external 

websites (Stringhini et al., 2010). 

 D) Is following a much larger number of 

accounts than the number of its 

followers. 

Table 1. Criteria for the identification of spammers. 

In such a context, it may happen that an email account has a high number of contacts or emails 

received, just because it receives a lot of spam or because it is a a member of several mailing 

lists. Manual detection of spammers, which was carried out in the experiment, can be rather time 

consuming. For large networks, supervised machine learning algorithms can automatically 
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identify nodes that behave as spammers by the content of their messages or by their network 

positions (Ramachandran & Feamster, 2006; Stringhini et al., 2010). 

In addition, before carrying out a full network analysis, it might be sometimes useful to remove 

the “noise” generated by the nodes located at the network periphery – including isolates, and 

those nodes with just a single link or with a very low degree. Depending on the specific goal and 

on the context, different strategies will be used: the objective of this research is not to comment 

on the possible data cleaning strategies, but to explore the effects produced by the removal of 

selected nodes both on individual metrics (ego-network) and at the whole network level. 

Consistently with this premise, different selection methods were tested, removing:  

a) the spammers to clean the network from unsolicited and mostly unwanted links; 

b) the nodes in the top first, fifth and tenth percentile of the network degree distribution, 

mostly for comparative purposes and to see the effects produced by a removal strategy 

based on the selection of nodes with a high degree centrality (which can sometimes be 

useful if spammers can only be recognized as the overly connected nodes); 

c) the nodes at the bottom of the network degree distribution, i.e. the isolates and those 

nodes connected by a single link, for their less significant role in large networks; 

d) the combination of the nodes in the top and bottom selections, as a strategy to apply when 

the identification of spammers is not possible; 

e) the combination of bottom nodes and spammers, to get rid both of unimportant nodes and 

manually identified spammers. 

 

3.1. Variables description 
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While removing nodes from the two networks, the authors considered the effects produced both 

on whole network metrics – such as the diameter, or the clustering coefficient – and on 

individual metrics for the remaining actors – such as their degree or betweenness centrality. In 

addition, the impact on the sentiment, the emotionality and the complexity of the language used 

was explored (Brönnimann, 2014). 

Networks were represented as directed graphs with n nodes (Twitter or email accounts) – 

denoted as G = {g1, g2, g3 … gn} – and of m directed arcs (emails; retweets, mentions, answers to 

tweets) linking these nodes. These graphs can be expressed by an adjacency matrix X of n rows 

and n columns, where the element xij positioned at the row i and column j is bigger than 0 if, and 

only if, there is a tie originating from the node gi and terminating at the node gj.  

 

3.1.1. Whole network metrics 

Average Distance Among Reachable Pairs (ADARP). This measure considers the average 

length of the shortest paths linking every possible pair of nodes in the graph – where nodes can 

reach one another, i.e. when the shortest path has a length lower than infinite (Doreian, 1974). 

Diameter. The network diameter represents the length of the shortest path linking the two 

most distant nodes in the network (considering reachable pairs). 

Clustering Coefficient. Is a measure of the tendency of nodes to cluster together, forming 

densely connected groups, with a lower number of cross-group connections. This coefficient is 

measured as suggested by Watts and Strogatz (1998), counting the number of fully connected 

nodes triplet and dividing it by the number of triplets where one link is missing. 
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Average Degree. Is the average of the number of arcs incident in each node of the 

network. 

 

3.1.2. Node level metrics 

Degree Centrality. This measure counts the number of arcs connecting a node to it 

neighbors. 

Closeness Centrality. This variable is calculated as the inverse of the distance of a node 

from all others in a network, considering the shortest paths that connects each pair of nodes. It is 

often used as a proxy for the speed by which a social actor can reach the others (Wasserman & 

Faust, 1994).  

Betweenness Centrality. This measure counts the number of times a node is in-between 

the shortest paths that connect every other pair of nodes (Wasserman & Faust, 1994). 

Betweenness Oscillations. This variable counts the oscillations in betweenness centrality 

for the node gi, within a specific time interval. If the node is keeping its position with respect to 

the other nodes, then the betwenness oscillations are equal to zero. On the other hand, if the node 

is changing its value of betweenness centrality reaching local minima or maxima, then the 

betwenness oscillations will be bigger than zero. This measure, also known as rotating 

leadership, has been introduced by Kidane and Gloor (2007) and has been previously used both 

at the individual and at the team level, to predict group creativity (Kidane & Gloor, 2007), 

innovative potential of startups (Allen, Gloor, Fronzetti Colladon, Woerner, & Raz, 2016) and 

business success in collaborative innovation (Davis & Eisenhardt, 2011). 
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Activity. In the email network it counts the number of messages sent by a specific actor. 

In the Twitter network it corresponds to the number of tweets posted by a user. 

Contribution Index. This measure is meant to express the unbalance in messages sent 

when compared to messages received by a social actor. The contribution of the node gi is defined 

by the formula: 

CI(g%) =
Messages	Sent − Messages	Received
Messages	Sent + Messages	Received		 

 

It varies between [1,-1], where a contribution index of 1 identifies people who only send 

messages (or tweets) without receiving an answer (Gloor, Laubacher, Dynes, & Zhao, 2003). 

Such a high contribution index value sometimes identifies spammers. Even if spammers 

selection was carried out manually in this study, the authors noticed that spammers often are 

users who send a significant number of messages, together with a contribution index bigger or 

equal to 0.8. 

Average Response Time (ART). This measure evaluates the average time it takes a social 

actor to respond to the email messages he/she receives, or to tweets which are directed at him 

(Ego ART). A second measure – Alter ART – measures the time it takes for others to respond to a 

user or to tweets where a user is mentioned (Gloor, Almozlino, Inbar, Lo, & Provost, 2014). 

Nudges. This variable counts, on average, the number of pings (nudges) required before a 

social actor answers to an email or to a tweet directed to him (Gloor et al., 2014). Nudges can be 

subsequent emails sent to an employee who has not yet responded, or new tweets which keep 

mentioning a Twitter user before receiving an answer. Similarly to ART, this measure can be 
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relative to the nudges sent by the node gi (Ego Nudges), or to the nudges sent from all other 

nodes to the node gi (Alter Nudges). 

 

3.1.3. Semantic variables 

Sentiment measures positivity of the language used in the emails or in the tweets sent by a 

user. This metric varies from [0,1], where 1 represents a positive sentiment, values around 0.5 

express a neutral sentiment and lower values represent a negative sentiment. This variable was 

calculated using a multi-lingual classifier based on a machine learning method trained on large 

datasets extracted from Twitter (Brönnimann, 2014), by means of the software Condor2. 

Emotionality. This variable measures the level of emotionality of the language used, 

calculated as the deviation from neutral sentiment (Brönnimann, 2014). If the level of 

emotionality is high, there is a more vivid debate, with possibly the alternation of messages with 

positive and negative sentiment. 

Complexity represents the average complexity of the vocabulary used and is calculated as 

the likelihood distribution of words within a text – i.e., the probability that each word of a 

dictionary appears in the text (Brönnimann, 2014). A word is considered as more complex when 

it appears rarely in the context analyzed, and not when just rare in general. This way, even very 

specific and rare words are considered as common if frequently used in a discourse. 

To calculate the presented measures, and to fetch the network data from emails and Twitter, the 

authors used the social network analysis software Condor and the software Pajek (De Nooy, 

                                                             
2 http://www.galaxyadvisors.com/products/ 
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Mrvar, & Batagelj, 2012). Many other metrics, both from Social Network and Semantic Analysis 

could have been included in the study. Selection was based on two criteria: firstly the authors 

wanted to include metrics which are commonly used by network and semantic analysts, such as 

the sentiment of the language used, or degree and betweenness centrality (e.g., Freeman, 1979); 

secondly, they aimed to test the effects of nodes’ removal on less-known metrics – such as 

betweenness oscillations –  which however revealed high explanatory power in previous studies 

(Allen et al., 2016; Kidane & Gloor, 2007). 

 

4. Results 

The node removal strategies presented in Section 3 were applied to both the Twitter and the 

email network. Table 2 shows the effects of node removal on the whole network metrics. 

Twitter Network ADARP CC AD D 

Full Network 4.33 0.40 8.3 16 

Removed Spammers 4.77 0.39 7.21 16 

Removed Bottom Nodes 4.25 0.42 8.82 16 

Removed Top 1st Percentile 4.54 0.34 5.48 14 

Removed Top 5th Percentile 2.42 0.33 4.09 7 

Removed Top 10th Percentile 2.36 0.32 3.45 6 

Removed Top 1st and Bottom Nodes 4.48 0.36 5.72 14 

Removed Spammers and Bottom Nodes 4.70 0.41 3.80 16 

Email Network ADARP CC AD D 

Full Network 4.20 0.24 18.29 14 

Removed Spammers 4.72 0.16 10.14 15 

Removed Bottom Nodes 3.91 0.29 39.59 13 
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Removed Top 1st Percentile 6.36 0.10 6.22 24 

Removed Top 5th Percentile 9.07 0.06 2.76 39 

Removed Top 10th Percentile 1.36 0.05 1.92 7 

Removed Top 1st and Bottom Nodes 6.04 0.12 10.6 20 

Removed Spammers and Bottom Nodes 4.47 0.20 7.5 13 

Notes. ADARP = Average distance among reachable pairs; CC = Clustering coefficient; D = Network 

diameter; AD = Average degree. 

Table 2. Impact of node removal on whole network metrics. 

Figure 1 shows the network pictures, after having applied each removal strategy separately.
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Figure 1. Network pictures after node removal. 
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Both networks are characterized by having a large periphery, with loosely connected nodes – i.e. 

isolates or nodes with just a single connection. However, the removal of “bottom” nodes (the 

“leaves” in the graph) does not seem to greatly affect the whole network metrics, apart from 

increasing the average degree. Similarly, removing the spammer nodes from the Twitter network 

did not have a big impact – the diameter remained unchanged and the other metrics had a 

reasonably small variation. By contrast, there were more significant variations in the email 

network: removing the spammers decreased the clustering coefficient and the average degree and 

slightly increased the network diameter. However, these variations were less significant than 

when removing the top connected nodes. In both networks, when removing the top nodes 

(especially when considering the nodes included in the top 5th or 10th percentiles), there were 

significant variations in all the metrics, i.e. a larger change in the connection patterns linking the 

social actors. This is also confirmed by the network pictures, which show that when removing 

the top connected nodes, the giant component is more significantly reduced – with a larger 

number of nodes relocated at the loosely connected network periphery, which surrounds the 

network core. When the network diameter significantly dropped under the value of 8, the size of 

the biggest network component was strongly reduced, as well as was the number of reachable 

pairs (having many small clusters or isolated nodes at the network periphery). Therefore, while it 

still seems reasonable for the analyst to remove spammers and peripheral nodes, it seems very 

dangerous to remove overly connected nodes since this can strongly impact network structure 

and metrics.  

Tables 3a and 3b show the effects of node removal at the individual level. In order to make the 

tables easier to read, the authors chose to present, in each row, the correlation of the row variable 

with the full network. 
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 Removed Nodes 

Twitter Network Spammers Bottom 

Nodes 

Top 1st 

Percentile 

Top 5th 

Percentile 

Top 10th 

Percentile 

Spammer and 

Bottom Nodes 

Top 1st Percentile 

and Bottom Nodes 

Alter ART .985* 1.000* .987* .993* .997* .985* .987* 

Ego ART .967* 1.000* .945* .964* .983* .967* .945* 

Alter Nudges .998* 1.000* .977* .957* .991* .997* .976* 

Ego Nudges .995* 1.000* .902* .975* .941* .995* .902* 

Activity .999* 1.000* .991* .997* .998* .998* .991* 

Contribution Index .961* .997* .943* .920* .904* .950* .938* 

Betwenness Centrality 1.000* 1.000* 1.000* .999* .999* .999* .999* 

Betwenness Centrality 

Oscillations 

.989* .993* .941* .920* .907* .980* .930* 

Closeness Centrality .871* 1.000* .799* .733* .691* .909* .877* 

Degree Centrality 1.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000* 

Sentiment .984* .987* .974* .959* .948* .982* .973* 

Emotionality .964* .982* .949* .928* .909* .961* .946* 

Complexity .977* .983* .961* .941* .920* .974* .961* 

* p < .01. 

Table 3a. Correlation coefficients with original node level metrics for the Twitter network. 

 Removed Nodes 

Email Network Spammers Bottom 

Nodes 

Top 1st 

Percentile 

Top 5th 

Percentile 

Top 10th 

Percentile 

Spammer and 

Bottom Nodes 

Top 1st Percentile 

and Bottom Nodes 

Alter ART .947* 1.000* .906* .917* .968* .945* .905* 

Ego ART .938* 1.000* .881* .905* .974* .936* .879* 

Alter Nudges .948* 1.000* .849* .905* .949* .948* .848* 

Ego Nudges .961* 1.000* .803* .910* .972* .961* .802* 

Activity .987* 1.000* .888* .728* .625* .986* .876* 
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Contribution Index .871* .980* .753* .634* .576* .835* .746* 

Betwenness Centrality .987* .981* .767* .373* .075* .962* .698* 

Betwenness Centrality 

Oscillations 

.950* .997* .870* .500* .309* .945* .857* 

Closeness Centrality .484* .975* .319* .186* .054* .477* .328* 

Degree Centrality .994* .986* .959* .770* .600* .981* .955* 

Sentiment .909* .970* .734* .614* .552* .877* .740* 

Emotionality .891* .970* .736* .612* .534* .805* .655* 

Complexity .901* .970* .742* .619* .539* .829* .681* 

* p < .01. 

Table 3b. Correlation coefficients with original node level metrics for the Email network. 

Looking at the node-level metrics is often important as the structural positions and roles of social 

actors can be used by many studies and predictions (e.g., Borgatti et al., 2013; Cross & Prusak, 

2002). Interaction metrics (Ego ART and Nudges, Alter ART and Nudges) are quite stable in 

both networks for all removal strategies used, being highly correlated with the original network 

values. Activity and Contribution index are relatively stable in the Twitter network, whereas 

these values are significantly affected when removing the top nodes from the email network – 

this is probably due to the fact that this network has a more connected core with a loosely 

connected periphery and this core is held together by the overly connected nodes. This could also 

be the reason why degree and betweenness centrality and betwenness oscillations show a similar 

stability in the Twitter network, but are unstable when removing top nodes from the email graph. 

Closeness centrality, on the other hand, seems to be significantly affected by every removal 

choice, except when removing the bottom nodes. The robustness of semantic variables is shown 

in the table for the Twitter network, while we find progressive change when removing the top 

nodes in the email network. Identifying the spammer nodes has less impact than just removing 
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the top connected nodes, as all the metrics – both at the ego-level and the whole network level – 

are less affected by this. Consistently, a good strategy seems to be to remove the spammers and 

the bottom nodes from the analyzed networks, with the dual benefit of “cleaning” the analysis 

from disturbance and of simplifying the graph, without significantly harming the robustness of 

the network metrics (excluding closeness in the email experiment). 

As a last step, the authors compared the sentiment, emotionality and complexity of the emails’ 

body with their subject lines. Indeed, it is often the case that the analyst cannot access email 

bodies during data collection (Gloor, Fronzetti Colladon, Giacomelli, et al., 2017; Gloor, 

Fronzetti Colladon, Grippa, et al., 2017) for privacy reasons. Email bodies often contain more 

sensible information that a company or an individual is willing to share; privacy is preserved 

better when only sharing subject lines. Table 4 shows the results obtained for the email network, 

correlating the semantic variables both at the author level (the average 

sentiment/emotionality/complexity of subject lines and email bodies for each specific actor) and 

at the email level (the correlation of the sentiment/emotionality/complexity of the subject line 

and of the body of each email). 

Author Level (N=27,597) 1 2 3 4 5 6 

1 Author Sentiment (Emails Content) 1.00      

2 Author Sentiment (Subject Lines) .25** 1.00     

3 Author Complexity (Emails Content) .33** .22** 1.00    

4 Author Complexity (Subject Lines) .25** .26** .74** 1.00   

5 Author Emotionality (Emails Content) -.26** -.22** -.90** -.73** 1.00  

6 Author Emotionality (Subject Lines) -.21** -.16** -.65** -.81** .66** 1.00 
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Email Level (N= 261,559) 1 2 3 4 5 6 

1 Email Content Sentiment 1.00      

2 Subject Line Sentiment .16** 1.00     

3 Email Content Complexity .01** .00 1.00    

4 Subject Line Complexity .02** -.09** .02** 1.00   

5 Email Content Emotionality .12** .04** .50** -.08** 1.00  

6 Subject Line Emotionality .01* .08** .02** .08** .10** 1.00 

*p<.05; **p<.01. 

Table 4. Correlating semantic variables of emails bodies and subject lines. 

As the table shows, correlations are positive and rather significant at the author level, meaning 

that the social actors are consistent in their average sentiment, emotionality and complexity, both 

in the email bodies and in the subject lines. On the other hand, correlations at the email level are 

rather low and their significance is mostly driven by the large number of observations. It seems, 

in this case, that language is used differently in email bodies and subject lines. This finding does 

not exclude the possibility of subject lines to show predictive power in several social phenomena 

(e.g., Gloor, Fronzetti Colladon, Giacomelli, et al., 2017). 

 

5. Discussion and Conclusions 

The analysis of email communication of employees, as well as the study of interaction dynamics 

on social media, can offer unprecedented insights to generate business value (Elshendy, Fronzetti 

Colladon, Battistoni, & Gloor, 2018; Gloor, 2017). 
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In this paper, the authors analyzed the effects of node removal strategies, mostly intended as 

possible data cleaning strategies, on two real networks, one extracted from Twitter and the other 

from three years of email communications. They tested the stability of several network metrics – 

either widely used or revealing expressive power in previous research – both at the ego-network 

and at the whole-network level. The results show that the overall graph structure, as well as the 

centrality (degree and betweenness centrality and betweenness oscillations) and interaction 

metrics (average response times, activity, contribution index and nudges), tend to remain 

relatively stable, when removing spammers and extremely peripheral nodes. Only closeness 

centrality seems to have a general lower stability. These results are consistent with those of 

recent experiments of Fronzetti Colladon and Vagaggini (2017) – who analyzed intranet social 

networks –, but partially refute the expectation that removing spammers from the analysis alters 

the network structure. A potential explanation for this finding might be that spammers are a 

special set of social actors, who are not integrated in the interaction dynamics as much as their 

peers, because their messages are mostly unsolicited and often remain unanswered. The content 

of spam messages does not add meaning to the general discourse and is therefore often ignored, 

with little impact on the network structure. Even when spammers have a large number of links –

because sending emails to all employees, or mentioning many users in a tweet – these links are 

rarely reciprocated. In Twitter networks, spam bots might also remain isolated, as their messages 

are rarely answered, mentioned or retweeted. There might be exceptions to this argument, for 

example in cases where fake news have significant propagation (Amarasingam, 2011; Shao, 

Ciampaglia, Varol, Flammini, & Menczer, 2017) – an event that did not happen in the authors’ 

dataset. Accordingly, future research is needed to address the effect of misinformation, intended 

as a specific category of spam on social media. 
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Even if outside the focus of this research, it is important to remember that, although spammers 

do not significantly alter the network structure, their presence can still generate organizational 

costs – for example they can cause interruptions or disturbance to workflows (Jackson et al., 

2001; Mark et al., 2008).  

In this study, spammers were identified analyzing real world data from Twitter and email 

communications, as those social actors sending irrelevant or unsolicited messages – overcoming 

one of the limitations of simulated approaches, where it can be more difficult to differentiate 

between spammers and overly connected nodes. The authors found that one of the best possible 

strategies for data cleaning and graph simplification is to remove the identified spammers and the 

least connected nodes. Since communication networks rely on connectivity for their functioning, 

if vertices are removed, the length of the average shortest paths will increase – with possibilities 

of disconnections and interruption of communications among peers (Newman, 2010). This can 

be a major problem when targeting generic hubs, is much less relevant when eliminating overly 

connected spammers: if eliminating a spammer would produce some isolates, the information 

lost would not be relevant. This way, one can reduce the computation time of network metrics, as 

well as reduce the distortion of insights coming from the network analysis. Such a strategy 

minimally affects the network metrics, without big variations in overall structure and individual 

scores of the remaining nodes. By contrast, focusing on the top connected nodes proved to be a 

more altering strategy, which may significantly change the social network structure and 

consequently the connection patterns between social actors. This is consistent with previous 

research addressing the problem of hub removal in scale-free networks (Albert et al., 2000; 

Callaway et al., 2000). In other words, simplifying the graph before carrying out a network 

analysis seems to be reasonable, when removing spammers and loosely connected nodes the 
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social network structure, response dynamics and content seem to remain relatively stable (except 

closeness centrality and average degree). On the other hand, the same results support ignoring 

spammers without filtering them out, since the authors found that the impact of these social 

actors on network metrics is often negligible. 

Spammers can be identified by many different strategies, depending on the context available, and 

the goals of the analysis (Bhowmick & Hazarika, 2018; Xu et al., 2016). The authors’ findings 

suggest that contribution index might be a valuable metric for filtering out spammers, for 

instance when the content of messages is unknown: in the case study networks, nearly all 

spammers had a contribution index above 0.8.  

A further contribution of this study was to consider semantic variables (language sentiment, 

emotionality and complexity) together with social network variables which also were robust 

except when removing the top nodes from the email network. In several real-world cases, 

privacy issues can limit data collection possibilities, as many companies deny fetching email 

bodies while studying their internal communication networks. For this reason, the authors tested 

the correlation of the semantic variables when calculated at the email and at the actor lever. They 

found that sentiment, emotionality and complexity are weakly correlated at the email level, but 

are strongly correlated at the actor level; meaning that the characteristics of the language used by 

a person are, on average, similarly reflected in his/her subject lines and email bodies. On the 

other hand, when considering single emails, one should treat subject lines and email bodies 

separately. 

Generally speaking, every analyst who wants to carry out a graph simplification by means of 

node removal, should pre-emptively study the effects of such intervention both on the overall 

network structure and on the node-level variables. This paper provides examples and methods to 
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test such effects. The main contribution is twofold. Firstly, this work extends the research about 

robustness and stability of social network metrics, when applying graph simplification strategies 

(Costenbader & Valente, 2003; Fronzetti Colladon & Vagaggini, 2017). Real networks are 

considered, overcoming some of the limitations of a simulated approach where for example the 

identification of real-world spammers is not possible. Contrary to studies mainly focused on 

centrality measures (e.g., Costenbader & Valente, 2003), this research also considers metrics of 

interaction over time (average response times and nudges) and the use of language of social 

actors. Secondly, this paper provides useful insights to guide those researchers (or business 

analysts) who study social media and email communication networks, in order to obtain new 

insights which can ultimately affect business value (Gloor, 2017). When using big data analytics, 

graph simplification and the removal of spammers can be necessary to reduce computational 

complexity and to clean the results of the analysis from distortions. This paper shows that 

removing spammers is relatively safe, as it does not lead to a significant change in social 

network metrics – both in email and Twitter networks. Moreover, this work presents a 

methodology, which can be replicated by network researchers when applying other removal 

strategies, to evaluate their impact and appropriateness.  

Lastly, this paper suggests that a network analysis is still possible, even in those cases where the 

removal of spammers is unfeasible (as they are for example not identifiable): removing 

spammers produced a negligible change in relative actor scores – for all the social network 

metrics considered, except for closeness and average degree. 

This research has some limitations originating from the choice of analyzing real world networks 

instead of using a simulated approach. While this choice allows a precise identification of the 

spammer nodes, which would not be so precise in a simulated experiment, it constrained the 
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number of networks the authors were able to analyze. Moreover, both networks considered have 

a degree distribution which is approximately scale-free. Future research could explore other 

social network structures – such as random networks – considering a larger number of graphs 

and also testing different sets of network metrics developed for big data analytics (e.g., Chang, 

2018). Additional ways of analyzing language could also be explored, such as novel ways to 

calculate sentiment and emotionality (e.g., Karyotis, Doctor, Iqbal, James, & Chang, 2018). In 

addition, it would be interesting to analyze interaction patterns extracted from other contexts or 

social platforms, such as face to face advice networks in the workplace, Facebook networks, or 

graphs extracted from online forums or knowledge sharing applications. Our methodology could 

be further tested on social clouds, where large amount of data can be stored or exchanged (e.g., 

Chang, 2017). In general, our approach can be replicated in many different contexts and with 

new metrics, to assess their robustness. 

To conclude, while spammers are a nuisance, and indiscriminately sent  “hurrah” messages of 

the CEO can lead to employee dissatisfaction (Kellaway, 2017), they at least do not seem to 

influence network characteristics. This is also true for indiscriminately sent tweets, which, 

through hitting friends and foes alike, will not change the overall Twitter network properties. 

This means that most metrics of social network structure, dynamics, and content are robust with 

regards to spammers. 
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